Thermal and Electrical Performance of CMOS Driver Compatible GaN Power Transistors

نویسندگان

  • John Roberts
  • Tom MacElwee
  • Lyubov Yushyna
  • Hugues Lafontaine
  • Iain Scott
چکیده

This paper describes the thermal and electrical characteristics of GaN on SiC power transistors that have been designed to be mounted directly upon a CMOS driver integrated circuit. In order to maximize the customer value proposition and minimize the cost implications of using a high capability GaN on SiC die, the hybrid device has to exhibit substantial performance and convenience advantages over a simple cascode structure based upon discrete transistors. The design was also directly influenced by the very complex and costly discrete component PCB based driver designs needed by SiC and IGBT power devices. The size, cost and inconvenience of these driver designs arises from the very high discrete component count, which may reach triple digits for the half bridge configuration. This paper describes the design of the GaN transistor and a compatible CMOS driver. This new self powered integrated structure reduces the external component count to single digit totals. In this paper, methods are discussed for modeling and validating each step of the product development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear modeling, analysis, design and simulation of a solid state power amplifier based on GaN technology for Ku band microwave application

A new non-linear method for design and analysis of solid state power amplifiers is presented and applied to an aluminum gallium nitride, gallium nitride (AlGaN-GaN) high electron-mobility transistor (HEMTs) on silicon-carbide (SiC) substrate for Ku band (12.4 13.6 GHz) applications. With combining output power of 8 transistors, maximum output power of 46.3 dBm (42.6 W), PAE of 43% and linear ga...

متن کامل

A Novel Low Voltage, Low Power and High Gain Operational Amplifier Using Negative Resistance and Self Cascode Transistors

In this work a low power, low voltage and high gain operational amplifier is proposed. For this purpose a negative resistance structure is used in parallel with output to improve the achievable gain. Because of using self cascode transistors in the output, the proposed structure remains approximately constant in a relatively large output voltage swing causing an invariable gain. To evaluate the...

متن کامل

Modern Topology& Thermal Analysis of Drive for Variable Speed Pumped Storage Power Plant

Given the significant power generation and consumption of variable-speed pumped storage power plants (VSPSPs), it is crucial to enhance drive methods and decrease drive losses, thereby increasing productivity. This paper proposes the topology for VSPSP drivers with two level voltage source converters (2LVSC) with 6+1 converters. Hydraulic and electrical VSPSP models are presented, following whi...

متن کامل

The Effect of DTMOS Transistors on the Performance of a Memristor-based Ternary CAM Cell in Low Power Applications

This paper proposes the use of DTMOS transistors in a memristor-based ternary CAM (MTCAM) instead of MOSFET transistors. It also evaluates the effect of forward body biasing methods in DTMOS transistors on the performance of a MTCAM cell in write mode. These biasing methods are gate-to-body tying (called DT1), drain-to-body tying (called DT2), and gate-to-body tying with a voltage supply of 0.1...

متن کامل

17.3 Temperature Measurement and Modeling of Low Thermal Resistance GaN-on-Diamond Transistors

Replacing SiC substrates with the highest thermal conductivity material available, diamond (κ up to 2000 W/mK), will result in significantly lower thermal resistance AlGaN/GaN HEMTs. In this work we combine Raman thermography and thermal simulation to assess the thermal resistance of state-of-the-art GaN-ondiamond HEMTs. INTRODUCTION The RF output power density achievable for GaN-based high ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013